Modification of potassium channel kinetics by amino group reagents

نویسندگان

  • S Spires
  • T Begenisich
چکیده

We have examined the actions of several amino group reagents on delayed rectifier potassium channels in squid giant axons. Three general classes of reagents were used: (1) those that preserved the positive charge of amino groups; (2) those that neutralize the charge; and (3) those that replace the positive with a negative charge. All three types of reagents produced qualitatively similar effects on K channel properties. Trinitrobenzene sulfonic acid (TNBS) neutralizes the peptide terminal amino groups and the epsilon-amino group of lysine groups. TNBS (a) slowed the kinetics of macroscopic ionic currents; (b) increased the size of ionic currents at large positive voltages; (c) shifted the voltage-dependent probability of channel opening to more positive potentials but had no effect on the voltage sensitivity; and (d) altered several properties of K channel gating currents. The actions of TNBS on gating currents suggest the presence of multiple gating current components. These effects are not all coupled, suggesting that several amino groups on the external surface of K channels are important for channel gating. A simple kinetic model that considers the channel to be composed of independent heterologous subunits is consistent with most of the modifications produced by amino group reagents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of potassium channel kinetics by histidine-specific reagents

We have examined the actions of histidine-specific reagents on potassium channels in squid giant axons. External application of 20-500 microM diethylpyrocarbonate (DEP) slowed the opening of potassium channels with little or no effect on closing rates. Sodium channels were not affected by these low external concentrations of DEP. Internal application of up to 2 mM DEP had no effect on potassium...

متن کامل

Chemical properties of the divalent cation binding site on potassium channels

The actions of divalent cations on voltage-gated ion channels suggest that these cations bind to specific sites and directly influence gating kinetics. We have examined some chemical properties of the external divalent cation binding sites on neuronal potassium channels. Patch clamp techniques were used to measure the electrophysiological properties of these channels and Zn ions were used to pr...

متن کامل

Modulation of potassium channel gating by external divalent cations

We have examined the actions of Zn2+ ions on Shaker K channels. We found that low (100 microM) concentrations of Zn2+ produced a substantial (approximately three-fold) slowing of the kinetics of macroscopic activation and inactivation. Channel deactivation was much less affected. These results were obtained in the presence of 5 mM Mg2+ and 4 mM Ca2+ in the external solution and so are unlikely ...

متن کامل

N-type inactivation and the S4-S5 region of the Shaker K+ channel

The intracellular segment of the Shaker K+ channel between transmembrane domains S4 and S5 has been proposed to form at least part of the receptor for the tethered N-type inactivation "ball." We used the approach of cysteine substitution mutagenesis and chemical modification to test the importance of this region in N-type inactivation. We studied N-type inactivation or the block by a soluble in...

متن کامل

A role for the middle C terminus of G-protein-activated inward rectifier potassium channels in regulating gating.

We have used sulfhydryl-modifying reagents to investigate the regulation of G-protein-activated inward rectifier potassium (GIRK) channels via their cytoplasmic domains. Modification of either the conserved N-terminal cysteines (GIRK1C53 and GIRK2C65) or the middle C-terminal cysteines (GIRK1C310 and GIRK2C321) independently inhibited GIRK1/GIRK2 heteromeric channels. With the exception of GIRK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 99  شماره 

صفحات  -

تاریخ انتشار 1992